Estrogenic in vitro assay on mouse embryonic Leydig cells.

نویسندگان

  • Gina La Sala
  • Donatella Farini
  • Massimo De Felici
چکیده

We and others have reported that mouse embryonic testes contain a subpopulation of somatic cells expressing estrogen receptor alpha (ERalpha). In order to provide evidence for a possible direct estrogen effect on mammalian testes from the early stage of their differentiation, here we devised a method for the in vitro culture of the ERalpha-expressing cells from 12.5 days post coitum mouse testes and their transfection with plasmids containing the classical estrogen responsive element (ERE) or the alternative estrogen AP-1 responsive element upstream of the luciferase reporter gene (ERE-Luc and AP-1-Luc). StAR immunopositivity of the most part of the ERalpha+ cells grown in culture and subjected to the estrogenic assay, allowed their identification as embryonic Leydig cells. Maximum induction of the ERE-Luc activity was achieved with 10 nM 17-beta estradiol (E2), from 1.7 to 3-fold in such cells and from 2.3 to 5.7-fold in MCF-7 cells used for comparison; the anti-estrogen ICI 182.780 abolished such effects. AP-1-Luc was less sensitive to E2 in both cell types (10 nM E2, 1.2 to 2.7-fold increase in embryonic Leydig cells; about 3-fold in MCF-7 cells) and the effect was not ICI-dependent. Eventually, we stimulated the transfected cells with various xenoestrogens such as lindane, bisphenol A or mono-(2-ethylhexyl) pthalate and with the phytoestrogen zeralenone obtaining evidence for ERE-Luc, but not AP-1-Luc stimulation in embryonic Leydig cells. These results represent evidence of functional ERalpha-dependent genomic pathways in embryonic Leydig cells and describe an in vitro assay suitable for evaluating the activity of putative estrogenic compounds on such cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells

Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...

متن کامل

Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were en...

متن کامل

Differentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells

Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...

متن کامل

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 2010